NOTE ON MMAT 5010: LINEAR ANALYSIS (2019 1ST TERM)

CHI-WAI LEUNG

1. Lecture 1

Throughout this note, we always denote \mathbb{K} by the real field \mathbb{R} or the complex field \mathbb{C} . Let \mathbb{N} be the set of all natural numbers. Also, we write a sequence of numbers as a function $x:\{1,2,\ldots\}\to\mathbb{K}$ or $x_i:=x(i)$ for i=1,2...

Definition 1.1. Let X be a vector space over the field \mathbb{K} . A function $\|\cdot\|: X \to \mathbb{R}$ is called a norm on X if it satisfies the following conditions.

- (i) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.
- (ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{K}$ and $x \in X$.
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

In this case, the pair $(X, \|\cdot\|)$ is called a normed space.

Remark 1.2. Recall that a metric space is a non-empty set Z together with a function, (called a metric), $d: Z \times Z \to \mathbb{R}$ that satisfies the following conditions:

- (i) $d(x,y) \ge 0$ for all $x,y \in Z$; and d(x,y) = 0 if and only if x = y.
- (ii) d(x,y) = d(y,x) for all $x, y \in Z$.
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ for all x,y and z in Z.

For a normed space $(X, \|\cdot\|)$, if we define $d(x, y) := \|x - y\|$ for $x, y \in X$, then X becomes a metric space under the metric d.

The following examples are important classes in the study of functional analysis.

Example 1.3. Consider $X = \mathbb{K}^n$. Put

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 and $||x||_{\infty} := \max_{i=1,\dots,n} |x_i|$

for $1 \leq p < \infty$ and $x = (x_1, ..., x_n) \in \mathbb{K}^n$.

Then $\|\cdot\|_p$ (called the usual norm as p=2) and $\|\cdot\|_{\infty}$ (called the sup-norm) all are norms on \mathbb{K}^n .

Example 1.4. Put

$$c_0 := \{(x(i)) : x(i) \in \mathbb{K}, \ \lim |x(i)| = 0\}$$
 (called the null sequence space)

and

$$\ell^{\infty} := \{ (x(i)) : x(i) \in \mathbb{K}, \sup_{i} |x(i)| < \infty \}.$$

Then c_0 is a subspace of ℓ^{∞} . The sup-norm $\|\cdot\|_{\infty}$ on ℓ^{∞} is defined by

$$||x||_{\infty} := \sup_{i} |x(i)|$$

Date: September 9, 2019.

for $x \in \ell^{\infty}$. Let

 $c_{00} := \{(x(i)) : \text{ there are only finitly many } x(i) \text{ 's are non-zero} \}.$

Also, c_{00} is endowed with the sup-norm defined above and is called the finite sequence space.

Example 1.5. For $1 \le p < \infty$, put

$$\ell^p := \{ (x(i)) : x(i) \in \mathbb{K}, \ \sum_{i=1}^{\infty} |x(i)|^p < \infty \}.$$

Also, ℓ^p is equipped with the norm

$$||x||_p := (\sum_{i=1}^{\infty} |x(i)|^p)^{\frac{1}{p}}$$

for $x \in \ell^p$. Then $\|\cdot\|_p$ is a norm on ℓ^p (see [2, Section 9.1]).

Example 1.6. Let $C^b(\mathbb{R})$ be the space of all bounded continuous \mathbb{R} -valued functions f on \mathbb{R} . Now $C^b(\mathbb{R})$ is endowed with the sup-norm, that is,

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

for every $f \in C^b(\mathbb{R})$. Then $\|\cdot\|_{\infty}$ is a norm on $C^b(\mathbb{R})$.

Also, we consider the following subspaces of $C^b(X)$.

Let $C_0(\mathbb{R})$ (resp. $C_c(\mathbb{R})$) be the space of all continuous \mathbb{R} -valued functions f on \mathbb{R} which vanish at infinity (resp. have compact supports), that is, for every $\varepsilon > 0$, there is a K > 0 such that $|f(x)| < \varepsilon$ (resp. $f(x) \equiv 0$) for all |x| > K.

It is clear that we have $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C^b(\mathbb{R})$.

Now $C_0(\mathbb{R})$ and $C_c(\mathbb{R})$ are endowed with the sup-norm $\|\cdot\|_{\infty}$.

From now on, we always let X be a normed sapce.

Definition 1.7. We say that a sequence (x_n) in X converges to an element $a \in X$ if $\lim ||x_n - a|| = 0$, that is, for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_n - a|| < \varepsilon$ for all $n \ge N$. In this case, (x_n) is said to be convergent and a is called a limit of the sequence (x_n) .

Remark 1.8.

(i) If (x_n) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the limits of (x_n) , then we have $||a-b|| \le ||a-x_n|| + ||x_n-b|| \to 0$. So, ||a-b|| = 0 which implies that a = b.

We write $\lim x_n$ for the limit of (x_n) provided the limit exists.

(ii) The definition of a convergent sequence (x_n) depends on the underling space where the sequence (x_n) sits in. For example, for each n = 1, 2..., let $x_n(i) := 1/i$ as $1 \le i \le n$ and $x_n(i) = 0$ as i > n. Then (x_n) is a convergent sequence in ℓ^{∞} but it is not convergent in c_{00} .

The following is one of the basic properties of a normed space. The proof is directly shown by the triangle inequality and a simple fact that every convergent sequence (x_n) must be bounded, i.e., there is a positive number M such that $||x_n|| \le M$ for all n = 1, 2, ...

Proposition 1.9. The addition $+: (x,y) \in X \times X \mapsto x + y \in X$ and the scalar multiplication $\bullet: (\lambda, x) \in \mathbb{K} \times X \mapsto \lambda x \in X$ both are continuous maps. More precisely, if the convergent sequences $x_n \to x$ and $y_n \to y$ in X, then we have $x_n + y_n \to x + y$. Similarly, if a sequence of numbers $\lambda_n \to \lambda$ in \mathbb{K} , then we also have $\lambda_n x_n \to \lambda x$.

A sequence (x_n) in X is called a **Cauchy sequence** if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_m - x_n|| < \varepsilon$ for all $m, n \ge N$. We have the following simple observation.

Proposition 1.10. Every convergent sequence in X is a Cauchy sequence.

Proof. Let (x_n) be a convergent sequence with the limit a in X. Then for any $\varepsilon > 0$, there is a positive integer N such that $||x_n - a|| < \varepsilon$ for all $n \ge N$. This implies that $||x_m - x_n|| \le ||x_n - a|| + ||a - x_m|| < 2\varepsilon$ for all $m, n \ge N$. Thus, (x_n) is a Cauchy sequence.

Remark 1.11. The converse of Proposition 1.10 does not hold.

For example, let X be the finite sequence space $(c_{00}, \|\cdot\|_{\infty})$. If we consider the sequence $x_n := (1, 1/2, 1/3, ..., 1/n, 0, 0, ...) \in c_{00}$, then (x_n) is a Cauchy sequence but it is not a convergent sequence in c_{00} .

In fact, if we are given any element $a \in c_{00}$, then there exists a positive integer N such that a(i) = 0 for all $i \geq N$. Thus we always have $||x_n - a||_{\infty} \geq 1/N$ for all $n \geq N$ and thus, $||x_n - a||_{\infty} \not\rightarrow 0$. This implies that the sequence (x_n) does not converge to any element in c_{00} .

The following notation plays an important role in mathematics.

Definition 1.12. A normed space X is said to be a Banach space if every Cauchy sequence in X must be convergent. The space X is also said to be complete in this case.

Example 1.13. With the notation as above, we have the following examples of Banach spaces.

- (i) If \mathbb{K}^n is equipped with the usual norm, then \mathbb{K}^n is a Banach space.
- (ii) ℓ^{∞} is a Banach space. In fact, if (x_n) is a Cauchy sequence in ℓ^{∞} , then for any $\varepsilon > 0$, there is $N \in \mathbb{N}$, we have

$$|x_n(i) - x_m(i)| \le ||x_n - x_m||_{\infty} < \varepsilon$$

for all $m, n \geq N$ and i = 1, 2, ... Thus, if we fix i = 1, 2, ..., then $(x_n(i))_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{K} . Since \mathbb{K} is complete, the limit $\lim_n x_n(i)$ exists in \mathbb{K} for all i = 1, 2, ... Nor for each i = 1, 2, ..., we put $z(i) := \lim_n x_n(i) \in \mathbb{K}$. Then we have $z \in \ell^{\infty}$ and $||z - x_n||_{\infty} \to 0$. So, $\lim_n x_n = z \in \ell^{\infty}$ (Check !!!!). Thus ℓ^{∞} is a Banach space.

- (iii) ℓ^p is a Banach space for $1 \leq p < \infty$. The proof is similar to the case of ℓ^{∞} .
- (iv) C[a,b] is a Banach space.
- (v) Let $C_0(\mathbb{R})$ be the space of all continuous \mathbb{R} -valued functions f on \mathbb{R} which are vanish at infinity, that is, for every $\varepsilon > 0$, there is a M > 0 such that $|f(x)| < \varepsilon$ for all |x| > M. Now $C_0(\mathbb{R})$ is endowed with the sup-norm, that is,

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

for every $f \in C_0(\mathbb{R})$. Then $C_0(\mathbb{R})$ is a Banach space.

Notation 1.14. For r > 0 and $x \in X$, let

(i) $B(x,r) := \{y \in X : ||x-y|| < r\}$ (called an open ball with the center at x of radius r) and $B^*(x,r) := \{y \in X : 0 < ||x-y|| < r\}$

(ii) $B(x,r) := \{y \in X : ||x-y|| \le r\}$ (called a closed ball with the center at x of radius r). Put $B_X := \{x \in X : ||x|| \le 1\}$ and $S_X := \{x \in X : ||x|| = 1\}$ the closed unit ball and the unit sphere of X respectively.

Definition 1.15. Let A be a subset of X.

- (i) A point $a \in A$ is called an interior point of A if there is r > 0 such that $B(a, r) \subseteq A$. Write int(A) for the set of all interior points of A.
- (ii) A is called an open subset of X if int(A) = A.

Example 1.16. We keep the notation as above.

- (i) Let \mathbb{Z} and \mathbb{Q} denote the set of all integers and rational numbers respectively If \mathbb{Z} and \mathbb{Q} both are viewed as the subsets of \mathbb{R} , then $int(\mathbb{Z})$ and $int(\mathbb{Q})$ both are empty.
- (ii) The open interval (0,1) is an open subset of \mathbb{R} but it is not an open subset of \mathbb{R}^2 . In fact, int(0,1)=(0,1) if (0,1) is considered as a subset of \mathbb{R} but $int(0,1)=\emptyset$ while (0,1) is viewed as a subset of \mathbb{R}^2 .
- (iii) Every open ball is an open subset of X (Check!!).

Definition 1.17. Let A be a subset of X.

- (i) A point $z \in X$ is called a limit point of A if for any $\varepsilon > 0$, there is an element $a \in A$ such that $0 < \|z a\| < \varepsilon$, that is, $B^*(z, \varepsilon) \cap A \neq \emptyset$ for all $\varepsilon > 0$.
 - Furthermore, if A contains the set of all its limit points, then A is said to be closed in X.
- (ii) The closure of A, write \overline{A} , is defined by

$$\overline{A} := A \cup \{z \in X : z \text{ is a limit point of } A\}.$$

Remark 1.18. With the notation as above, it is clear that a point $z \in \overline{A}$ if and only if $B(z,r) \cap A \neq \emptyset$ for all r > 0. This is also equivalent to saying that there is a sequence (x_n) in A such that $x_n \to a$. In fact, this can be shown by considering $r = \frac{1}{n}$ for n = 1, 2, ...

Proposition 1.19. With the notation as before, we have the following assertions.

- (i) A is closed in X if and only if its complement $X \setminus A$ is open in X.
- (ii) The closure A is the smallest closed subset of X containing A. The "smallest" in here means that if F is a closed subset containing A, then A ⊆ F. Consequently, A is closed if and only if A = A.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that $A \neq \emptyset$. For part (i), let $C = X \setminus A$ and $b \in C$. Suppose that A is closed in X. If there exists an element $b \in C \setminus int(C)$, then $B(b,r) \nsubseteq C$ for all r > 0. This implies that $B(b,r) \cap A \neq \emptyset$ for all r > 0 and hence, b is a limit point of A since $b \notin A$. It contradicts to the closeness of A. So, C = int(C) and thus, C is open.

For the converse of (i), assume that C is open in X. Assume that A has a limit point z but $z \notin A$. Since $z \notin A$, $z \in C = int(C)$ because C is open. Hence, we can find r > 0 such that $B(z,r) \subseteq C$. This gives $B(z,r) \cap A = \emptyset$. This contradicts to the assumption of z being a limit point of A. So, A must contain all of its limit points and hence, it is closed.

For part (ii), we first claim that \overline{A} is closed. Let z be a limit point of \overline{A} . Let r > 0. Then there is $w \in B^*(z,r) \cap \overline{A}$. Choose $0 < r_1 < r$ small enough such that $B(w,r_1) \subseteq B^*(z,r)$. Since w is a limit point of A, we have $\emptyset \neq B^*(w,r_1) \cap A \subseteq B^*(z,r) \cap A$. So, z is a limit point of A. Thus, $z \in \overline{A}$ as required. This implies that \overline{A} is closed.

It is clear that A is the smallest closed set containing A.

The last assertion follows from the minimality of the closed sets containing A immediately. The proof is finished.

Example 1.20. Retains all notation as above. We have $\overline{c_{00}} = c_0 \subseteq \ell^{\infty}$. Consequently, c_0 is a closed subspace of ℓ^{∞} but c_{00} is not.

Proof. We first claim that $\overline{c_{00}} \subseteq c_0$. Let $z \in \ell^{\infty}$. It suffices to show that if $z \in \overline{c_{00}}$, then $z \in c_0$, that is, $\lim_{i \to \infty} z(i) = 0$. Let $\varepsilon > 0$. Then there is $x \in B(z, \varepsilon) \cap c_{00}$ and hence, we have $|x(i) - z(i)| < \varepsilon$ for all $i = 1, 2, \ldots$ Since $x \in c_{00}$, there is $i_0 \in \mathbb{N}$ such that x(i) = 0 for all $i \geq i_0$. Therefore, we have $|z(i)| = |z(i) - x(i)| < \varepsilon$ for all $i \geq i_0$. So, $z \in c_0$ as desired.

For the reverse inclusion, let $w \in c_0$. It needs to show that $B(w,r) \cap c_{00} \neq \emptyset$ for all r > 0. Let r > 0. Since $w \in c_0$, there is i_0 such that |w(i)| < r for all $i \ge i_0$. If we let x(i) = w(i) for $1 \le i < i_0$ and x(i) = 0 for $i \ge i_0$, then $x \in c_{00}$ and $||x - w||_{\infty} := \sup_{i=1,2...} |x(i) - w(i)| < r$ as required. \square

Proposition 1.21. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and only if Y is closed in X.

Proof. For the necessary condition, we assume that Y is a Banach space. Let $z \in \overline{Y}$. Then there is a convergent sequence (y_n) in Y such that $y_n \to z$. Since (y_n) is convergent, it is also a Cauchy sequence in Y. Then (y_n) is also a convergent sequence in Y because Y is a Banach space. So, $z \in Y$. This implies that $\overline{Y} = Y$ and hence, Y is closed.

For the converse statement, assume that Y is closed. Let (z_n) be a Cauchy sequence in Y. Then it is also a Cauchy sequence in X. Since X is complete, $z := \lim z_n$ exists in X. Note that $z \in Y$ because Y is closed. So, (z_n) is convergent in Y. Thus, Y is complete as desired. \square

Corollary 1.22. c_0 is a Banach space but the finite sequence c_{00} is not.

Proposition 1.23. Let $(X, \|\cdot\|)$ be a normed space. Then there is a normed space $(X_0, \|\cdot\|_0)$, together with a linear map $i: X \to X_0$, satisfy the following condition.

- (i) X_0 is a Banach space.
- (ii) The map i is an isometry, that is, $||i(x)||_0 = ||x||$ for all $x \in X$.
- (iii) the image i(X) is dense in X_0 , that is, $i(X) = X_0$.

Moreover, such pair (X_0, i) is unique up to isometric isomorphism in the following sense: if $(W, \| \cdot \| \cdot \| \cdot \|)$ is a Banach space and an isometry $j: X \to W$ is an isometry such that $\overline{j(X)} = W$, then there is an isometric isomorphism ψ from X_0 onto W such that

$$j = \psi \circ i : X \to X_0 \to W.$$

In this case, the pair (X_0, i) is called the completion of X.

Example 1.24. Proposition 1.23 cannot give an explicit form of the completion of a given normed space. The following examples are basically due to the uniqueness of the completion.

- (i) If X is a Banach space, then the completion of X is itself.
- (ii) By Corollary 1.22, the completion of the finite sequence space c_{00} is the null sequence space c_{00} .
- (iii) The completion of $C_c(\mathbb{R})$ is $C_0(\mathbb{R})$.

References

- [1] Introductory functional analysis with applications, Wiley, (1989).
- [2] J. Muscat, Functional analysis, Springer, (2014).